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Solution 7

Exercise 1:

a) For a 2 terminal device, the two cells are connected in series. The current of the total
device is always limited by the sub-cell with the smallest current. In this case the
a-Si:H cell current (16.8 mA/cm2) will limit the current of the c-Si subcell. Therefore
the c-Si will only have an efficiency of

Effc−Si = 25% · 16.8 mA/cm2

41.8 mA/cm2 = 10%

Hence in the (not realistic) best case, neglegting light absorption in the top a-Si cell,
we get an efficiency of: Efftot = 10% + 10% = 20%. This is lower than the c-Si cell’s
efficiency alone.

b) For a 4 terminal device no more current matching is needed. For simplification we
assume that there is no parasitic absorption in the insulating layer that separates the
two cells. As a first approximation, the light absorbed in the a-Si:H cell cannot be
reused in the c-Si cells. Therefore the efficiency of the c-Si will be reduced by the ratio
of the Jsc. The efficiency of the c-Si cells will be:

Effc−Si = 25% ·
(

1− 16.8 mA/cm2

41.8 mA/cm2

)
= 15.0%

Adding the efficiency of the a-Si cell we get a total efficency of Eff.tot = 15.0%+10% =
25.0%. So, even in the irrealistic best case the tandem device is not better than the
c-Si cell alone. The lower FF of the a-Si cell compared to the c-Si cell cannot be
compensated by the better use of higher energy photons of the a-Si cell. (a-Si has a
higher band gap which is implied in the higher Voc.)

c) Comparing to a c-Si cell the microcrystalline cells have a lower FF. Therefore it is
worth to add an a-Si cell that exploit better the high energy photons.

Exercise 2:

a) The absorption coefficient of silicon increases with photon energy. Therefore, it makes
sense to use the cell with a larger bandgap - which is sensitive in the blue range - as
the top cell, which lets pass enough red light to be absorbed in the bottom cell. From
the rule of thumb Voc ≈ 2

3
Eg it is clear, that cell a has a smaller bandgap than cell b.

Therefore, it is used as the bottom cell and cell b as the top cell.

b) To interconnect the cells b and a monolithically means to connect them in series.
Therefore, for each current the corresponding voltages are added resulting in the fol-
lowing I-V curve:
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Figure 1: I-V curves of two solar cells a and b and the curve of the monolithically intercon-
nected cell ba.

c) The current at the maximum power point (MPP) is relevant for the question, which
cell is the limiting one. From the plot one can see that IaMPP < IbMPP, therefore cell a
is the limiting cell and the tandem cell [ba] is bottom-limited.
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Exercise 3: The given charge distribution is justified by the fact that the global charge

must remain 0 in the cell. We assume that the (spatial) density Ndb of the dangling bonds
is constant but that their charge state can change within the i-layer. Remember that the
dangling bonds are so-called amphoteric states and can acquire positive charge (D+), neg-
ative charge (D−) or remain neutral (D0). In our case, we restrict ourselves to D+ and
D− states. In the following, a step-by-step solving of the Poisson equation for the following
(symmetrical) charge distribution within the i-layer is given:

ρ(x) =

{
+qNdb for x ∈ [−d/2; 0]

−qNdb for x ∈ ]0; d/2] .
(1)

a) The 1D Poisson equation for this problem is:

∂2φ(x)

∂x2
=

{
+qNdb

ε0εr
for x ∈ [−d/2; 0]

−qNdb

ε0εr
for x ∈ ]0; d/2] .

(2)

By integrating once, the electric field is then given by

E(x) = −∂φ(x)

∂x
=

{
− qNdb

ε0εr
x− c+ for x ∈ [−d/2; 0]

qNdb

ε0εr
x− c− for x ∈ ]0; d/2] .

(3)

We require here that the electric field has to be continuous at 0. Thus, c+ = c− ≡ C.
By integrating once again, the electric potential is obtained:

φ(x) =

{
qNdb

2ε0εr
x2 + Cx+ d+ for x ∈ [−d/2; 0]

− qNdb

2ε0εr
x2 + Cx+ d− for x ∈ ]0; d/2] .

(4)

For the potential, the following boundary conditions are required:

• Continuity at 0:

d+ = φ(0−)
!

= φ(0+) = d− ≡ D (5)

• φ(d
2
)

!
= 0:

⇒ 0
!

= −qNdbd
2

8ε0εr
+ C

d

2
+D.

From this we get

D =
qNdbd

2

8ε0εr
− Cd

2
. (6)

• φ(−d
2
)

!
= Vbi:

⇒ Vbi
!

=
qNdbd

2

8ε0εr
− Cd

2
+D (7)

(6)
=
qNdbd

2

4ε0εr
− Cd. (8)

3



Large-area electronics 2021 Solution 7 F.J. Haug & N. Wyrsch

We then obtain:

C =
qNdbd

4ε0εr
− Vbi

d
(9)

and

D
(6)
=
Vbi
2
. (10)

Using equations (3) to (10), we finally obtain

E(x) = −∂φ(x)

∂x
=

{
− qNdb

ε0εr
x− qNdbd

4ε0εr
+ Vbi

d
for x ∈ [−d/2; 0]

qNdb

ε0εr
x− qNdbd

4ε0εr
+ Vbi

d
for x ∈ ]0; d/2]

(11)

for the electric field and

φ(x) =


qNdb

2ε0εr
x2 +

(
qNdbd
4ε0εr

− Vbi
d

)
x+ Vbi

2
for x ∈ [−d/2; 0]

− qNdb

2ε0εr
x2 +

(
qNdbd
4ε0εr

− Vbi
d

)
x+ Vbi

2
for x ∈ ]0; d/2] .

(12)

for the electric potential.

b) For a vanishing electric field in the middle of the layer, we use (11) at x = 0 and set:

0
!

= E(0) = −qNdbd

4ε0εr
+
Vbi
d

leading to

Ndb =
4ε0εrVbi
qd2

=

{
7.75× 1016 cm−3 for d = 200 nm

8.61× 1015 cm−3 for d = 600 nm.

c) A typical value for Ndb for a good i-layer before degradation is 5× 1015 cm−3. After
degradation, this value can increase by one or two orders of magnitude (see simulations
results in the lecture). Even though our assumptions for the charge distribution are
quite rough, the obtained values are not so far away from the reality.

d) Under illumination, the generation of charge carriers will change the charge distribu-
tion, leading to less screening of the electric field in the middle of the layer (remember
that the voltage between the i-layer is uniquely given by the doped layers, see lecture).
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